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The availability of forcing data required to drive distributed hydrological models is significantly 

limited within mountainous terrain and at higher elevations due to the spatial scarcity of observations. 

Previous studies have commonly used three methods of estimating and distributing forcing data within 

basins that have sparse in-situ observations: a) one or two low-elevation stations in combination with 

empirical models, b) gridded output from a mesoscale model, or c) a combination of the two. In this 

study, we evaluated each source of forcing data within the heavily instrumented North Fork American 

River Basin in California. For the mesoscale model source, we selected the Weather Research and 

Forecasting (WRF) model, which used lateral boundary conditions from the North American Regional 

Reanalysis. Finally, each case of forcing data was used to drive the Distributed Hydrology Soil and 

Vegetation Model (DHSVM), and we examined those variables whose sources resulted in significant 

differences in simulated snowpack and streamflow. 

Results indicated that the choice of the least biased forcing source was not uniform for every 

variable. Accumulated precipitation was dependent on the year examined, however, it is important that 

the WRF model performed as well as the single station combined with the climatological weighting 

from the Parameter Regression on Independent Slopes Model (PRISM). Simulated streamflow from 

DHSVM was more sensitive to the source of precipitation forcing than other variables, resulting in 

biased high/low flow during years when the precipitation biased was high/low. 
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Simulations of snowpack melt rates were most sensitive to the source of radiation data used and 

the elevational range considered. While the empirical estimated long-wave irradiance at high-elevation 

sites resulted in melt rates lower than observations, at lower-elevations the same forcing caused mid-

winter melt that was not observed. However, the sensitivity of simulated snowpacks at lower-elevations 

was significantly reduced under a forest canopy. Short-wave irradiance from the WRF model was 

consistently less biased than empirical estimates, especially during cloudy days. In general, these 

results support the use of output from the WRF model over empirical estimates, but stress the need for 

additional observations to allow a complete evaluation of the energy balance.  
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INTRODUCTION

Snowpack provides drinking water to over 40% of the world’s population (Meehl et al. 

2007) and generates between 50-80% of total runoff within the western U.S (Dettinger 2005), 

making it an important resource. Simulations of snow and hydrological processes have been 

found to be critically dependent on the meteorological forcing data (Reed et al. 2004; Mote et al. 

2005; Tobin et al. 2011). The accuracy of precipitation and air temperature data, which ultimately 

determine the quantity and phase (rain or snow) of modeled precipitation, directly affects the 

accuracy of simulated of runoff and snow accumulation, particularly at relatively small spatial 

scales and shorter time scales. Other meteorological forcing variables are also important.  For the 

western slopes of the Sierra Nevada, for example, over 80% of the snow surface energy balance 

is controlled by net-irradiance (Marks and Dozier 1992); thus errors in downward short- and 

long-wave irradiance data strongly influence simulated snowpack melt rates. Although not 

exhaustive, Table 1 represents some common sources of forcing data used for hydrological 

studies within mountainous terrain. Evaluating these different sources of forcing data, however, 

is not a trivial task, especially in high elevation mountain basins where very limited observations 

of these forcing variables are typically available (Weingartner and Pearson 2001; Lundquist et al. 

2003)

In this paper we examine three sources of forcing data: a) in situ observations, b) 

empirical models (see Section 3) and c) physically based simulations from the Weather and 

Research Forecasting Model (WRF, Skamarock and Klemp 2008, described in Section 3) in a 

well-instrumented maritime mountain basin, the North Fork of the American River Basin (NF 

American Basin, Figure 1) in the northern Sierra. Due to the previously-referenced dominance of 

the irradiance terms in the surface energy balance in this river basin (Marks and Dozier 1992), 

1
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we do not examine turbulent fluxes and wind speed sources, but focus on the sources of 

precipitation, temperature, relative humidity and downward short- and long-wave irradiance 

data. Common empirical methods for estimating the downward irradiance variables are critically 

dependent on the diurnal temperature range and the relative humidity used. Therefore, we also 

investigate these effects.  Below we describe specific experiments based on the three cases from 

Table 1, for which specific forcing sets over the NF American Basin will be created and 

evaluated. 

Table 1 Common Cases of meteorological forcing data sources, which are more fully described in section 3.

T P RH W SW LW Examples of Prior 
Studies using this 
approach

Case 
1

Limited 
Obs.

Limited 
Obs

Limited 
Obs

Limited 
Obs

Empirical
, (DTR, 
RH)

Empirical
(DTR, 
RH)

(Whitaker et al. 
2003; Waichler 
and Wigmosta 
2003; Surfleet et 
al. 2011; Kuraś et 
al. 2011)

Case 
2

WRF WRF WRF WRF WRF WRF (Zhao 2009; 
Westrick and 
Storck 2002; 
Westrick 2001; 
Leung et al. 1996)

Case 
3

WRF WRF WRF WRF Empirical 
(DTR, 
RH)

Empirical
(DTR, 
RH)

(Dettinger et al. 
2011; Tapash et al. 
2011) 

2
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Figure 1 a) Map of the North Fork American River Basin located on the western slope of the Sierra Nevada. 
Shown are the meteorological stations (HMT, CDWR, and iButtons) and WRF grid cell centers used in this 
study. Labeled stations show stations measuring net-irradiance (*) and downward solar-irradiance (^). 
Center insert b) shows location of basin (arrow) and extent of the WRF 6km domain (white outline). Stars in 
c) show the locations of the 8 snowpillows used for model analysis. Red outlines show the boundaries of the 
Onion Creek and East Fork sub-basins in which stream stage was recorded. The black contour running north 
to south shows the climatological average snow line at 1500 meters.

Case 1 represents a study basin in which there are only one or two stations that measure 

precipitation, temperature and relative humidity. These point observations are then extrapolated 

to the entire basin using spatiotemporal weights based on historical observations from regional 

3



www.manaraa.com

studies. This methodology has been employed in studies including Waichler and Wigmosta 

(2003), Surfleet et al. (2011), Kuraś et al. (2011), and Whitaker et al. (2003). Table 2 highlights 

the typical availability of meteorological observations and common methods of estimating and 

distributing the unmeasured variables required for hydrological modeling. In comparison with 

temperature and precipitation, dew point temperature, and short- and long-wave irradiance are 

sparsely measured variables, which has led previous studies to estimate dew point temperature 

and irradiance using empirical models based on measured predictors such as the daily minimum 

temperature (dew point) and diurnal temperature range (short wave irradiance) (Thornton and 

Running 1999). Such empirical models are often fit to observed data from a particular region or 

climate, and their transferability to other regions has been noted as a significant limitation 

(Flerchinger et al. 2009). 

Case 2 represents a study where only atmospheric model output is used to generate 

surface forcing data (e.g., Zhao 2009; Westrick 2001; Westrick and Storck 2002; Leung et al. 

1996). An important advantage in using an atmospheric model is that the model can provide all 

meteorological variables at grid points with a greater spatial density than most observational 

networks. Increased spatial resolution of each grid cell has allowed numerical weather prediction 

models to resolve the topography that drives orographic precipitation gradients (Barros and 

Lettenmaier 1994; Anders et al. 2007), giving greater confidence in the underlying physical basis 

of the models. However, the accuracy of modeled precipitation has been shown to be sensitive to 

the microphysics scheme chosen (Chin et al. 2010; Dettinger et al. 2011; Minder et al. 2011). . 

More importantly, a more physically based estimation of downward short- and long-wave 

irradiance is achieved through the model’s vertical representation of atmospheric moisture 

content, vertical temperature profile, cloud cover, etc. 

4



www.manaraa.com

Table 2 Typical variables for hydrological modeling. 

Measurement notes Method of estimation 
at a point with only T 
and P measured

Spatially distributed Mesoscale Model 
Input

Precipitation Severe undercatch in 
most gages due to wind 
and phase of 
precipitation (Sevruk 
1983)

Temperature used to 
determine fraction of 
solid or liquid 
precipitation (USACE 
1956)

Often linear lapse 
rate (Wigmosta et al. 
1994), or PRISM 
maps used for spatial 
scaling (Daly et al. 
1994), 

Captures large scale 
precipitation, 
atmospheric river 
events (Dettinger et 
al. 2011), and 
orographic effects 
(Barros and 
Lettenmaier 1994). 
Cannot resolve basin 
valley features. 

Air 
temperature

Can be biased from 
location of sensor  or 
from inadequate 
radiation shielding 
(Huwald et al. 2009).

Often hourly 
measurements 
estimated from Tmax 
and Tmin (Susong et al. 
1999).

Assumed lapse rate 
from global average 
-6.5 C km-1 (Hamlet 
and Lettenmaier 
1999) or from 
nearby stations 
(Susong et al. 1999) 
or PRISM (Daly et 
al. 1994).

More physically 
based description of 
mean lapse rates and 
how lapse rate 
changes with 
geographic location 
or time (Minder et 
al. 2010).

Vapor pressure Few measurements; 
sensors prone to error 
and hysteresis without 
frequent calibration 
(Marks and Dozier 
1992).

Assume Tmin represents 
dewpoint (Running et 
al. 1987); large errors 
in arid environments 
(Kimball et al. 1997).

Assumed linear 
lapse rate from 
nearby stations 
(Susong et al. 1999) 
or fixed dewpoint 
lapse rate [-1.25 C 
km-1, (Running et al. 
1987).

More physically 
based description of 
water vapor and how 
it changes with 
elevation and 
through time.

Downward 
short-wave 
(SW) 
irradiance

Often not available; 
sensors often covered 
by snow or rime 
(Matsui et al. 2012); 
moisture on radiometer 
dome. 

Calculate potential 
solar irradiance and 
estimate transmissivity 
from diurnal temp. 
range and vapor 
pressure
 (Hungerford 1989; 
Bristow and Campbell 
1984). Attenuation by 
clouds difficult to 
model (Male and 
Granger 1981).

Clear-sky irradiance 
calculated based on 
topography (Dozier 
and Frew 1990), 
scaled by point 
measurement or 
estimate of decrease 
due to cloud cover

Temporal 
representation of 
cloud cover and total 
atmosphere moisture 
content 
(attenuation), 
consistent with 
modeled 
meteorology.

Downward 
long-wave 
(LW)  
irradiance 

Often not available, 
less expensive 
instruments may be 
biased. Errors due to 
snow cover, frost or 
moisture on radiometer 
dome (Malek 2008).

Calculated based on 
surface temperature 
and vapor pressure or 
just one of these (Brunt 
1932; Brutsaert 1975; 
Satterlund 1979).

Varies with local air 
temperature, 
sometimes LW 
radiation from 
surrounding pixels 
incorporated  (Marks 
and Dozier 1992).

Vertical 
representation of 
total atmospheric 
temperature and 
moisture can be used 
to calculate LW 
irradiance

5
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Finally, in Case 3 an atmospheric model generates surface temperature and precipitation 

at grid points within a basin, but irradiance is empirically estimated at each point based on the 

diurnal temperature range and relative humidity of the atmospheric model (e.g., Dettinger et al. 

2011; Das et al. 2011). Using an empirical model as the source of irradiance input may be 

preferable due to biases in atmospheric models stemming from grid size restrictions (Ruiz-Arias 

et al. 2011) and representation of cloud cover (Edwards and Slingo 1996). However, it is not 

clear whether empirical models that have been fitted to observed diurnal temperature range and 

relative humidity will perform as well with atmospheric model input that may be 

characteristically different from in situ observations.

For each case of meteorological forcing data, we ask the following questions:

1. How do simulated meteorological variables compare with in-situ observations, 

particularly in high elevation areas where stations are typically unavailable?

2. How and where does the source of forcing data impact simulations of snowpack?  

3. How does the choice of forcing data impact streamflow simulations in basins 

draining different elevation ranges? 

To answer these questions we selected the North Fork of the American River Basin (NF 

American Basin, Figure 1) as a case study. The basin is particularly well suited for exploring the 

hydrological sensitivity to the choice of meteorological forcings for several reasons. First, it is a 

relatively simple basin in terms of subsurface contributions: shallow soils, steep topography and 

negligible ground water contribution during the cool season mean that accurate simulation of 

streamflow is largely dependent on the meteorological forcing. Second, the National Oceanic and 

Atmospheric Administration’s Hydrometeorological Testbed (NOAA/HMT) program maintains a 

6
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dense network of meteorological stations that cover the basin (Ralph et al. 2005).  Third, the 

upper portions of the basin are largely unaffected by water management (such as dams or 

diversions for water supply), and observations of snowpack and streamflow are also available for 

the basin.  

We use the HMT network and other observational datasets (described in Section 2) to 

evaluate different cases of empirical and mesoscale input data. In Section 3 we outline specific 

cases of meteorological sources and use them to determine where they have the greatest impact 

on simulated snowpack and streamflow using the Distributed Hydrology Soil and Vegetation 

Model (DHSVM, Wigmosta et al. 1994). Results are reported in Section 4, a brief discussion is 

provided in Section 5, and conclusions are summarized in Section 6. 

7
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Chapter 1

OBSERVED DATA

Our first question was addressed by comparing all suitable meteorological observations 

within the NF American Basin. Locations of all meteorological stations used in this study are 

shown in Figure 1a and listed in Appendix A. Because 98% of the NF American Basin 

precipitation occurred from October through June (National Climatic Data Center 

http://www.ncdc.noaa.gov/oa/ncdc.html), we restricted our analysis to these months. Hourly 

observations of precipitation and air temperature for water years 2001-2010 (October – 

September) were obtained from 8 weather stations operated by the California Department of 

Water Resources (CDWR, data available through the California Data Exchange Center, 

http://cdec.water.ca.gov/). Measurements of precipitation, temperature, and relative humidity 

taken every two minutes were obtained at 13 HMT stations in or near the study basin (data 

available at http://hmt.noaa.gov/). Three stations (Desert Research Institute; HMT) provided 

downward short-wave irradiance measurements, and three HMT stations observed net-irradiance 

from 2006 – 2010 (Figure 1a). In addition, 52 self-recording sensors (iButtons) were distributed 

in trees across the basin (following methods in Lundquist and Huggett 2008) to provide 

temperature and relative humidity data from 2008-2010. 

Continuous daily streamflow measurements at the basin outlet were acquired from the 

U.S. Geological Survey (Station #11427000, North Fork Dam). In order to allow verification of 

the simulated internal basin streamflow timing, additional stream stage data (described by 

Lundquist et al. 2009) for water years 2007 to 2010 were measured in 2 subbasins shown in 

Figure 1c.

8
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Snow water equivalent data (SWE) were obtained from 6 snow pillows from the CDWR 

and 2 snowpillows from the U.S. Natural Resources Conservation Service’s SNOTEL network 

(data available at http://www.wcc.nrcs.usda.gov/snow/) (Figure 1c). Four of the snowpillows are 

located near the basin’s climatological snow line at 1500 m (Mizukami and Smith 2012; Shamir 

and Georgakakos 2006), and four are located above 2000 m.

All data were closely quality controlled for unrealistic outliers, constant values and 

extreme jumps, following Meek and Hatfield (1994). The two-minute precipitation, temperature 

and vapor pressure measurements from HMT were aggregated to hourly values if at least 75% of 

that hour was available; otherwise the hour was considered missing. The temperature data from 

the self-recording sensors required minor filling to prevent a cold bias when sensors became 

briefly snow covered (See Appendix B for details). Due to the limited measurement of wind 

speed at all stations, no correction for precipitation gauge undercatch was attempted (Sevruk 

1983).

9
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Chapter 2

METHODS

We created three cases of forcing data sources which are the NF American Basin specific 

counterparts to the general cases described in Table 1. The source of the variables in each case is 

shown in Table 3, and the methods used to generate them are described below. For each source, 

Table 3 Cases of meteorological variable sources used to force DHSVM. For all sources, wind speed was taken 
from the Secret Town station. Empirical estimates are based on the diurnal temperature range (DTR) and the 
relative humidity (RH).

Variable 
Source/
Case 
description

Precipitation, 
Temperature, 
Relative 
humidity

Short-wave Irradiance Long-wave Irradiance

Case 1: 
“Secret town 
station+ 
Empirical”

Observations 
from Secret 
Town (SRT) 
station 

Empirical estimation (Thornton 
and Running 1999) using:

 DTR from SRT station 
 RH from Tmin=Tdew 
assumption
(Running et al. 1987)

Empirical estimation (Dilley and 
O’Brien 1998) using:

 DTR from SRT station 
 RH from SRT station

Case 2:
“ALL WRF”

WRF model 
output

WRF model output WRF model output

Case 3A: 
“Empirical
SW with RH 
from the Tdew 
assumption”

WRF model 
output

Empirical estimation  (Thornton 
and Running 1999) using:

 DTR from WRF 
 RH from Tmin=Tdew 
assumption 
(Running et al. 1987)

WRF model output 

Case 3B: 
 “Empirical 
LW with RH 
from the WRF 
model”

WRF model 
output

WRF model output Empirical estimation (Dilley and 
O’Brien 1998) using:
 DTR from WRF model output 
 RH from WRF model output

Case 3C: 
 “Empirical 
LW with RH 
from the Tdew 
assumption”

WRF model 
output

WRF model output Empirical estimation (Dilley and 
O’Brien 1998)  using:

 DTR from WRF model 
output
 RH from Tmin=Tdew 
assumption (Running et al. 
1987)

10
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we compared wet season (defined as October-June) averages of distributed temperature, relative 

humidity and accumulated precipitation to observations. Comparing elevational gradients of 

relative humidity is problematic as it includes temperature errors; therefore, all relative humidity 

measurements and estimations were converted to vapor pressure for comparison. Estimated 

short- and long-wave irradiance data were separated into clear and cloudy days using a clear sky 

index based on the observed daily short-wave irradiance. Daily averaged values greater than half 

of the maximum clear sky irradiance were defined as clear. Modeled streamflow from DHSVM 

was evaluated using the percent bias of flow and the Nash-Sutcliff efficiency.

a) Case 1: Limited Observations

A common constraint for hydrological studies within complex terrain is to have only one 

available observational station measuring maximum and minimum temperature, and daily 

accumulated precipitation at low to middle elevations. The relative humidity, and short- and 

long-wave irradiance inputs required by distributed hydrological models must then be estimated 

at the station, and all variables distributed to the rest of the basin. We simulated this type of 

observationally-based forcing set by selecting the Secret Town station (Figure 1a) as our base 

station. This station was selected because it is located below the snow line at 829 m, which 

allowed easier maintenance and resulted in minimal missing data over the 2001 to 2010 period of 

interest (0.5% missing precipitation data, 1% missing temperature data).

Following the methods of Thornton and Running (1999), the potential daily short-wave 

irradiance and its transmissivity through the atmosphere were calculated at the Secret Town 

station based on the observed diurnal temperature range and daily relative humidity, which itself 

was estimated by assuming that saturation occurred during the daily minimum air temperature. 

Daily values of short-wave irradiance were then disaggregated to a 3-hourly time-step according 

11
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to the local solar zenith angle. Following the recommendations of Flerchinger et al. (2009) we 

used the algorithm of (Dilley and O’Brien 1998) to estimate mean daily downward clear sky 

long-wave irradiance from the diurnal temperature range and daily relative humidity. 

Adjustments for cloudy sky were made following (Marks et al. 1998) using estimates of 

precipitable water from Prata (1996). We note that there exists variability among empirical 

irradiance models, although we focus only on the above selections for brevity.

Next, each variable was extrapolated from Secret Town to a 150 m grid over the NF 

American Basin. Precipitation was distributed using the spatial weighting from a 30 arc second 

(800 m) 1971-2000 climatological normals product, derived using the Parameter Regression on 

Independent Slopes Model (PRISM, Daly et al. 1994, 2004). The temperature record from the 

Secret Town station was extrapolated using an average annual lapse rate of -6.5 °C km-1, based 

on California climatology (Daly et al. 2008). Vapor pressure was extrapolated using a -1.25 °C 

km-1 dew point lapse rate (Franklin 1983). Solar shading was accounted for by splitting the 

downward short-wave irradiance into diffuse and direct components, which were corrected using 

monthly maps of terrain shading based on solar geometry and a 150 m digital elevation model 

(Wigmosta et al. 1994). Long-wave irradiance was distributed uniformly across the basin.

b) Case 2: Output from the WRF model

We selected as a mesocale model, the Weather Research and Forecast model (WRF, 

Skamarock and Klemp 2008) to generate 6 km surface meteorological data for 10 partial water 

years (October-June of water years 2001-2010). Boundary conditions were provided by the 

North American Regional Reanalysis (NARR), a 32 km gridded product created by ingesting 

surface and upper air observations over the continental U.S. (Mesinger et al. 2006). In order to 

allow the surface output of the WRF model to be comparable to the historic observations, we 

12
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reinitialized its boundary conditions every 5 days with 3 hours of spin up, resulting in a 

temporally continuous simulation. This technique takes advantage of the accurate forecasting 

range of the WRF model (~5days) and has been shown to capture the variability in 

meteorological conditions over an 11-year period in Southern California when generated with the 

Penn State/NCAR mesoscale model (MM5), version 5, WRF’s predecessor (Hughes and Hall 

2009). For complete details of the WRF model configuration and downscaling methods see 

Dettinger et al. (2011). Note that the Morrison 2-moment microphysics (Morrison et al. 2009) is 

used here. 

Surface output from 61 of the WRF model’s 6 km grid cells across the NF American 

Basin and at 8 nearby snowpillow locations was extracted (Figure 1a and 1b). At each grid cell, 

hourly precipitation, 2-meter temperature, 2-meter water vapor mixing ratio and downward 

short- and long-wave irradiance were extracted from the WRF model for the wet season of water 

years 2001-2010. Relative humidity and vapor pressure were calculated from the water vapor 

mixing ratio, temperature and pressure. The center of each 6 km grid cell was treated as a pseudo 

station, and each meteorological variable was interpolated to a 150 m grid using inverse distance 

weighting. Differences between the 6 km and 150 m grid elevations were accounted for by 

adjusting temperature according to the local observed annual average lapse rate of -6.5°C km-1. 

Due to the relatively small contribution from turbulent fluxes to the snow energy balance (Marks 

and Dozier 1992), we did not focus on the WRF model’s wind speed, but instead followed the 

assumption of previous studies and uniformly distributed the observed wind speed from the 

Secret Town station (Waichler and Wigmosta 2003). The comparison between the forcing data in 

Case 1 and 2 (Section 4) highlights which variables improved from using the more 

computationally expensive WRF model to produce the meteorological forcing data. 

13
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Case 3: Combination of the WRF and empirical models

This case of meteorological data emulates those studies that used temperature, 

precipitation and relative humidity from mesoscale model output, and then estimated short- and 

long-wave irradiance using empirical models (Case 3). Temperature and precipitation were used 

as in Case 2 from the WRF model, and short- and long-wave irradiance were estimated at these 

points using the empirical methods described in Case 1. In addition, we created variants on Case 

3 in order to independently test the impact of different relative humidity sources on empirical 

estimation of short- and long-wave irradiance. Case 3A empirically estimated short-wave 

irradiance using relative humidity based on the dew point assumption, and WRF model long-

wave irradiance. We compared Case 3A and Case 2 to illustrate the different characteristics of 

downward short-wave irradiance estimation between an empirical model and the WRF model. 

In Case 3B and 3C we empirically estimated long-wave irradiance based on relative 

humidity data from the WRF model and from the dew point assumption, respectively. Both Case 

3B and 3C used the WRF model short-wave irradiance. The comparison between Case 3B and 

3C will determine the importance of accurate relative humidity data for empirical estimation of 

long-wave forcing data. These last two variants of Case 3 will then be compared to the WRF 

model (Case 2) and observations in order to identify how, and within which locations, errors 

from different sources of long-wave irradiance most impact simulated snowpack and streamflow. 

c) Hydrological simulations of the NF American Basin

To evaluate the impact of simulated hydrologic variables, each meteorological forcing set 

in Table 3 was then used to drive the Distributed Hydrology Soil and Vegetation Model, 

DHSVM, which is a fully distributed, physically based hydrological model that simulates the 

surface energy and water balance and the transport of water as a function of meteorological 

14
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forcing, topography, soil drainage characteristics, and vegetation cover (Wigmosta et al. 1994; 

Waichler and Wigmosta 2003). It has commonly been applied at grid scales ranging from 30 to 

180 m over basins that include complex terrain (Leung et al. 1996; Westrick 2001; Westrick and 

Storck 2002; Zhao 2009, and Nijssen et al. 1997). For each time step at each grid cell, DHSVM 

uses a full energy balance approach to determine snow accumulation and ablation within the 

overstory and understory (if present) and at the surface (Andreadis et al. 2009). Surface  and 

subsurface moisture transport are simulated via the topographic gradients between grid cells, 

with water ultimately propogating to the simulated stream network, where a 1-dimentional 

routing scheme is used to calculate streamflow at the basin outlet (Wigmosta et al. 1994).

DHSVM was set up to run at a 150m grid resolution and 3-hour time step over the NF 

American Basin (Figure 1a) and in point mode at selected snowpillow stations (Figure 1c). This 

grid cell size was chosen to balance the need to accurately represent the North Fork basin’s 

topography with computational expense. Soil type and land cover data were obtained from the 

STATSGO and USGS databases (Soil Survey Staff 2006, U.S. Geological Survey 2005). The 

basin is predominantly covered by evergreen needle leaf (71%), as well as open shrub (17%) and 

mixed forest (6%). At every time step and at each grid cell, DHSVM requires the following 

meteorological forcing data: precipitation, temperature, vapor pressure, wind speed, and 

downward short- and long-wave irradiance. 

A full model calibration of DHSVM for the NF American basin was beyond the scope of 

our investigation and instead standard parameters were chosen based on previous studies 

(Wigmosta et al. 1994, Storck 2000). Model performance as it relates to our specific use of the 

model in the experiments is evaluated in subsequent sections.
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Chapter 3

RESULTS

a. How do different sources of precipitation compare?

Wet season accumulated precipitation values from Case 1 (one measurement site extrapolated 

using PRISM climatology) and Case 2 (WRF output) are plotted against elevation and compared 

to observations in Figure 2. For most years, the PRISM forcing (Case 1) and the WRF model 

(Case 2) capture the correct averaged orographic precipitation gradient; yet some years, such as 

2002 and 2003, show large biases. For example, the WRF model has a 234 mm (26%) and 458 

mm (34 %) wet bias during water years 2001 and 2003, while the PRISM-based estimates more 

closely match observations. In contrast, the PRISM-based estimations had a 237.0 mm (-18.2%) 

dry bias in 2002, while WRF more closely matched observations.  Also, during water year 2006, 

when the study domain received 180% of the climatological average, the PRISM forcing (Case 

1) overestimated precipitation observations by 409 mm (17.2%), while the WRF model (Case 2) 

had a -68 mm (-2.9%) bias. These errors are related to the relationship between the PRISM base 

station (Secret Town, the lowest elevation green dot in Figure 2) and the higher elevation 

stations. During years when the Secret Town station measured more or less precipitation relative 

to the surrounding stations, Case 1 errors were large. Averaged over the entire study period, the 

WRF model had a consistent bias of +196 mm (17%), although some of this difference is likely 

due to gage undercatch, which was not accounted for in the observations.  
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Figure 2 Total wet season accumulated 
precipitation versus elevation for water years 
2001 through 2010. Black stars show the WRF 
model precipitation for each of the (61) 6km 
grid cells. The grey dots represent the 
observed precipitation at the Secret Town 
station extrapolated using weights from 
PRISM climatology (see section 3 for details). 
Observations from HMT and CDWR stations 
are shown as pink diamonds and green circles, 
respectively. Note: Water year 2006 required a 
different x-axis scaling.
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b. Impact of precipitation forcings on simulations of streamflow

Over the 2001 to 2010 period, the DHSVM modeled streamflow had adequate 

performance when compared to daily observations at the basin outlet. For the entire study period, 

Case 1 and Case 2 had daily Nash-Sutcliffe efficiency (NSE) values of 0.57 and 0.53, and 

percent biases of -3.4% and 0.8%, respectively. The poor NSE values are likely the result of the 

uncalibrated model and the period of statistics considered, October through June, which include 

more variable streamflow than the summer months not examined here. While the percent biases 

were low over the entire period, individual years had larger biases depending on the source of 

precipitation forcing.

Years when the source of precipitation was biased low/high, resulted in biased low/high 

simulated total streamflow. Two example years, 2003 (Figure 3) and 2006 (Figure 4) highlight 

how biases in precipitation propagate into simulated streamflow. During 2003, Case 1 (the Secret 

Town station and PRISM) had a -102 mm (-7.7%) accumulated precipitation bias, while Case 2 

(The WRF model) had a +457 mm (+30.3%) bias (Figure 1). Simulated streamflow from both 

cases at the basin outlet during 2003 is shown in Figure 3a. The largest simulated streamflow 

errors occurred at the end of December and early January (Figure 3b), leading to biases in the 

total accumulated streamflow (expressed in basin equivalent precip) of -349 mm (-47.5%) in 

Case 1 and +144 mm (19.6%) in Case 2 (Figure 3c).

In contrast, during water year 2006 (Figure 4) the biases in precipitation forcings (and 

resulting simulated streamflow bias) had opposite signs as 2003. Case 1 had a precipitation bias 

of +409 mm (17%) and resulting total streamflow bias of +403 mm (26%), while Case 2 had a 

precipitation bias of -68 mm (-3%) and a total streamflow bias -252 mm (-16%). These two 
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examples illustrate the importance of selecting an accurate source of precipitation forcing for 

unbiased simulation of streamflow. However, because the timing of simulated streamflow is also 

dependent on simulated snowpack and other meteorological forcing variables, we examine these 

impacts below.

Figure 3 a) DHSVM’s modeled streamflow at the NF American Basin outlet and b) error compared to 
observations at the NF USGS gauge for water year 2003. The cumulative streamflow expressed as equivalent 
basin precipitation is shown in c). 
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Figure 4 Same as Figure 3, but for water year 2006. 

c. How do different sources of temperature compare?

The two sources of estimated temperature agreed well with observations of mean 

temperature and with each other over all water years. Figure 5a shows the mean wet season mean 

temperature plotted against elevation for water years 2008 to 2010 when additional HMT, 

CDWR, and iButton records were available for comparison. The WRF model output was not 

statistically different from the temperatures estimated using the simpler Case 1 method during 

the averaged wet season period. However, on sub-daily time scales, the two sources of 

temperature had different averaged diurnal temperature ranges (Figure 5b). The WRF model’s 

diurnal temperature range (Case 2) was on average 3.0°C lower than the average of all 

observations sites, while Case 1 was on average 2.6°C larger. Interestingly, the differences 

between these two estimated forcings was as large as the variance between observations. In 
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regards to hydrological modeling, errors/accuracy in the diurnal temperature range are important 

because they can bias empirical estimates of short-wave irradiance and simulations of 

transpiration. 

Figure 5 a) Mean Oct-June air temperature versus elevation for water years 2008 to 2010. 
b) Averaged diurnal range of temperature from Oct. to June for water years 2008-2010. Dashed line indicates 
constant diurnal temperature range resulting from lapsing temperature from the Secret Town station. 
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d. How do different estimates of vapor pressure compare?

Empirical models of long-wave irradiance are dependent on the surface vapor pressure to 

provide an estimate of cloudiness and of atmospheric transmissivity during clear sky conditions 

(Kimball et al. 1982); therefore, three sources of estimated surface vapor pressure were 

compared to observations (Figure 6). For Case 1, the assumed -1.25 degree C km-1 dewpoint 

lapse rate (proposed by Franklin (1983) and used in Running et al. 1987) from the Secret Town 

station did not match the decreasing gradient of observed vapor pressure over the NF American 

Basin. The WRF model (Case 2) generally captured the observed gradient of vapor pressure, yet 

had a mean bias overall of -190 Pa across all elevations. When we used the WRF model’s 

minimum air temperature to estimate the dew point, the resulting average vapor pressure (Case 

3C) had a mean bias overall of +245 Pa. For comparison, the averaged difference between Case 

2 and Case 3C in terms of relative humidity is 31.9%. 

Figure 6 Average Oct–June vapor pressure versus elevation for water years 2008-2010, within the region of 
the North Fork Basin. All relative humidity measurements and observations were converted to vapor 
pressure. 
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e. Comparison of estimated irradiance forcing sources

Three stations measured downward short-wave irradiance from 2006 to 2010 (Figure 1a). 

We examined the mean daily fluxes between March and June to highlight differences in the 

estimated forcings during the melt season. Comparisons between daily observed fluxes and the 

estimated forcing sources are shown in Figure 7a for clear days and in Figure 8a for cloudy days 

(defined in Section 3). On clear days, the effect of topographic shading can be seen in the lower 

median values of the observe short-wave irradiance at the Sierra Snow Lab and Big Bend 

stations, and the higher median values at the Foresthill station. The DHSVM shading algorithm 

accurately captured the differences in median short-wave irradiance between stations for all 

sources of forcing data. Another interesting result was that the empirical estimation of short-

wave irradiance using the radiation directly output from the WRF modeled temperature range 

(Case 3A) had average median values 37 Wm-2 less than the WRF model (Case 2). On cloudy 

days (Figure 8a), both of the empirical estimates (Cases 1 and 3A) were consistently positive 

biased, while the WRF model (Case 2) was not statistically different from observations at Big 

Bend and Foresthill, and was the least biased option at the Sierra Snow Lab. In general, the WRF 

modeled short-wave irradiance performed better than the empirical models tested. 
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Figure 7 Averaged daily statistics from each radiation forcing over clear days between March and June of a) 
downward short-wave irradiance, b) downward long-wave irradiance and c) simulated net-irradiance 
compared to available observational stations.  X-axis identifies the case number for each model run (see 
legend), and the columns identify the site location.  Note that the left-hand column shows shortwave at the 
Sierra Snow lab but Longwave and Net radiation at Blue Canyon. We define clear days when the mean 
observed short-wave irradiance is greater than half of the daily averaged maximum short-wave irradiance. 
Red crosses show outliers. 

No direct observations of downward long-wave irradiance were available to test the 

accuracy of the estimated long-wave forcings. However, substantial differences between sources 

of estimated long-wave irradiance were found during both clear and cloudy periods (Figure 7b 

and 8b). The long-wave irradiance from Case 1 was empirically estimated at the Secret Town 

station and uniformly distributed across the basin, resulting in a median value of 311 Wm-2 on 

cloudy days. In contrast, the long-wave irradiance calculated by the WRF model (Case 2) 
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decreases with elevation, with median values of 329, 295 and 281 Wm-2 at Foresthill (1040m), 

Blue Canyon (1609m), and Big Bend (1739m), respectively. This behavior is expected based on 

the observed decrease of surface temperature and vapor pressure in the atmospheric column at 

higher elevations, resulting in lower long-wave radiance emission (Marty et al. 2002). The 

median values of Cases 3B and 3C also decreased with increasing elevation, but within a smaller 

range.

Figure 8 Same as Figure 5, but for cloudy days. We define cloudy days when the mean observed short-wave 
irradiance is less than half of the daily averaged maximum short-wave irradiance.

Each case of irradiance forcing was used to force the DHSVM model over the NF 

American Basin, and simulated net-irradiance values at the surface were compared to point 
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observations at the sites shown in Figure 1a. For both clear and cloudy periods, the differences 

between each source of short- and long-wave forcing propagated into the simulated net 

irradiance (Figures 7c and 8c). However, the evaluation of net irradiance was complicated by 

differences in the snow surface albedo, for which no direct observations were available. The 

simulated albedo decay was parameterized in DHSVM as a function of days since last snowfall 

(Laramie and Schaake 1972), which was the same for Cases 2, 3A-C, which all had the same 

precipitation input. During clear days (Figure 7c), the WRF model had larger median biases in 

net radiation at the higher-elevation station, Big Bend (-39 Wm-2), than at the lower station, Blue 

Canyon (-9 W m-2). The empirical estimations of long-wave (Case 3B and 3C) resulted in 

slightly less biased median values of -32 and 3 Wm-2, and -28 and 9 Wm-2, at Big Bend and Blue 

Canyon, respectively. 

f. Impact of long-wave irradiance forcings on simulations of snowpack

Because the differences between estimated long-wave forcings showed the greatest 

variation during the melt season (Figure 7a), we examine the impact of this variable on 

simulating snow melt. Two snow observing stations were selected to illustrate the impacts of 

estimated forcings at high (Sierra Snow Lab, 2100m) and middle (Blue Canyon, 1609m) 

elevation sites. Figure 9a shows observed and simulated SWE at the Sierra Snow Lab (2100m) 

for each different long-wave forcing case over water year 2009.  All other forcing variables were 

taken from WRF and were constant between simulations. SWE simulated at the high elevation 

site (Sierra Snow Lab) only differed between Cases 2, 3B and 3C after March when the 
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Figure 9 (a,b) Simulated SWE from DHSVM compared to observations at the Sierra Snow Lab (2100m) and 
Blue Canyon (1609m) during 2008 – 2009. Modeled (c,d) internal pack temperature, (e,f) downward short-
wave irradiance, (g,h) downward long-wave irradiance, and (i,k) net-irradiance. Note that the timeperiod of 
plots e,g,i focus on the melt season (March-May), and plots f,h,j focus on the erroneous mid-winter melt event 
during January – time-periods marked with vertical dashed lines in (a) and (b). 

simulated pack temperature increased to the melting point (Figure 9c). During this period, the 

differences in simulated net-irradiance (Figure 9i) between the WRF model (Case 2) and the 

empirical forcings (Case 3B and 3C) result in different simulated melt rates. Case 2 had the 

lowest simulated melt rats and the lowest net-irradiance, which was consistent with the negative 

bias found in the WRF model net irradiance (Figure 7c). The difference in long-wave forcings 
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between Case 3C and Case 2 resulted in the simulated snow disappearance date at the Sierra 

Snow Lab station to shift later by 12 days, which was consistent with a shift towards later snow 

disappearance during other years (not shown). Empirical estimates of LW (Cases 3B and 3C) 

were relatively insensitive to the source of RH during this spring melt period (Figure 9 a, g, i).

In contrast, the simulated snowpack at the Blue Canyon station (Figure 9b) at a lower 

elevation of 1609 m, had a warmer pack temperature throughout the winter (Figure 9d) and thus 

was more sensitive to winter biases in the surface energy balance. During a 10-day period in 

January, the empirically estimated net-irradiance forcings (Figure 9j) were biased high by ~50 

Wm-2, resulting in high simulated melt rates that were not observed at the Blue Canyon 

snowpillow (Figure 9b). This bias in mid-winter melt was largest for Case 3C (empirical LW 

with RH estimated from Tmin), and resulted in an offset in simulated SWE for the rest of the 

season.  These January LW irradiance estimates (Figure 9h) were very sensitive to the source of 

RH, whereas the spring irradiance estimates (Figure 9g) were not.

This example illustrates how simulated snowpack at middle elevation sites are more 

sensitive to biased irradiance forcings during the winter, whereas higher and colder snowpacks 

are only sensitive during the spring melt period.  To test the robustness of this observation, we 

compared modeled with observed SWE at 8 snow pillows in the area, 4 above 2000 m and 4 

below (Figure 10).  For snow in clearings, the January melt bias in Case 3C (empirical LW) was 

present at all of the lower-elevation snow pillows (in red, Figure 10 a,b,c).

While the above biases in long-wave irradiance forcings were shown to have a critical 

effect on the simulated melt rates at open sites typical of snowpillows, their impact under a forest 

canopy would be expected to be significantly less, as a higher fraction of long-wave emission 

comes from the canopy instead of the atmosphere (Pomeroy et al. 2009). Within DHSVM, this 
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process is parameterized based on the fractional coverage of the vegetation (See Appendix C for 

a full description), which was set at 0.75 for the 77% of the NF American Basin covered by an 

overstory canopy (U.S. Geological Survey 2005). Therefore, we evaluate how the presence of an 

overstory modifies the impact of different long-wave sources on simulated melt rates. As 

discussed above, simulated SWE within clearings (Figure 10b and 10c) at lower elevation sites 

(red) showed strong sensitivity to the lower long-wave forcing of Case 2. However, the same 

forcings applied under a canopy with 0.75 fractional coverage reduced the difference between 

the simulations in Case 2 and Case 3C. At lower elevations, the simulated snow under the forest 

canopy melted in January regardless of how atmospheric long-wave irradiance was prescribed.  

Thus, within forested regions, the source of long-wave irradiance appears to be less important 

than the correct modeling of the canopy temperature.  Because we do not have SWE 

measurements under the canopy, this remains an area for future investigation. 

Figure 10 a) Observed SWE during the 2008-2009 period at the 8 snowpillows in or surrounding the NF 
American Basin, separated into stations above and below 2000 meters elevation. Point simulations of SWE 
with forcings from Case 2 and 3C are shown for b,c) no vegetation (bare soil resembling a snowpillow) and 
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d,e) a forest overstory with 0.75 fractional coverage (representing the vegetation type covering 77% of the NF 
American Basin).

Figure 11 DHSVM’s modeled daily streamflow at a) the NF American Basin outlet compared to daily 
observations at the NF USGS gauge for water year 2008. Dashed lines identify the period shown with a 
zoomed in view in b, c, and d).  Simulated  3-hourly streamflow at, c) Onion Creek and d) East Fork sub-
basins compared to 3-hourly observed stream stage (right axis). Note, c) and d) only compare timing of 
streamflow. 

g. Impact of long-wave irradiance forcings on timing of simulations of streamflow

Figure 11a shows modeled streamflow at the NF American Basin outlet compared to 

observations for 2008. Empirical LW forcing (Case 3) resulted in faster spring melt, which is 

illustrated by more flow in May and less flow in June than the all-WRF forcing scenario (Case 

2). The impact on basin aggregated streamflow from different long-wave irradiance forcings was 

not as significant as one might expect from the snow pillow simulations due to the high forest 

density over the NF American Basin. Both simulations of streamflow had the largest errors 
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during individual storms, and during the melt season (Figure 11b). At each sub-basin (Figure 11c 

and 11d), the observed stage height featured diurnal snowmelt cycles through mid-May and then 

decayed throughout June. Both simulations of streamflow captured this pattern at the lower East 

Fork Basin, but both have prolonged snowmelt and higher streamflow throughout June at the 

higher Onion Creek Basin. These simulated streamflow errors at the higher sub-basin propagate 

into the basin outlet (Figure 11b). In general, neither long-wave forcing case was found to 

explain low spring melt rates and errors in simulated streamflow timing over the NF American 

Basin. 
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Chapter 4

DISSCUSION

The meteorological forcings from the 6km WRF model compared to in-situ observations 

were found to perform as well as, or better than, other sources examined in this study. This is a 

particularly important finding because such models can be produced in areas with limited station 

coverage, or even in remote areas that do not have any access to any other sources of data. That 

said, it is important to note that the WRF model was configured to produce a “best case” forcing 

data scenario, using updates from a reanalysis product every five days to prevent the large-scale 

weather systems from diverging from the historical observations. Data assimilation incorporated 

in the large-scale forcing used to drive the WRF simulations (and in particular accurate vertical 

soundings from nearby meteorological stations) would not be present in remote areas where 

inaccuracies in the large-scale forcing would be expected to degrade performance. For similar 

reasons, degradation of the accuracy of the WRF model output is likely to occur when a free 

running global circulation model is used instead of a reanalysis product (e.g. in climate change 

assessments). In addition, the transferability of these results to other regions may be dependent 

on the configuration of the WRF model. For example, the choice of the microphysics scheme and 

representation of cloud cover can affect the short- and long-wave irradiance at the surface 

(Edwards and Slingo 1996). However, for this configuration of the WRF model, we found that 

the short-wave irradiance performed better than empirical estimations using the WRF model 

temperature, especially during cloudy days, and therefore recommend the use of short-wave 

irradiance from the WRF model if available. One possible explanation for this improved 

performance over other methods is that the physical representation of atmospheric moisture 
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content led to the improved short-wave irradiance values over the NF American Basin, although 

further work will be needed to test this hypothesis.,

Biases in the precipitation forcings from the Secret Town station and PRISM weights 

(Case 1) and the WRF model (Case 2) were found to vary in magnitude and sign between years. 

Averaged over the entire study period, Case 2 had a consistent positive bias of +196 mm, 

although water year 2006 did have a negative bias (-68 mm). In contrast, Case 1 did not show a 

consistent accumulated precipitation bias, under-predicting observed values on average by -123 

mm during 2001-2003, and over-predicting by +183 mm from 2004-2010. The variation of the 

bias in Case 1 is related to the relationship between the PRISM base station and the higher 

elevation stations, while the consistent bias in Case 2 may be caused by the choice of 

microphysics scheme, as Chin et al. (2010) suggests in a study over California, or by gage 

undercatch. These results suggest that if the only available station measuring precipitation is 

unrepresentative of the basin wide orographic gradient, then the WRF model may provide a more 

consistent precipitation forcing. Given that in most locations, we have limited means of assessing 

whether one existing station is representative, WRF is likely a better choice in areas of limited 

surface observations.

The biases in precipitation forcing for a given year were found to significantly impact the 

DSHVM simulated streamflow at the NF American Basin outlet. Two examples years were used 

to illustrate how biased dry and wet precipitation forcings propagated into the total volume of 

simulated streamflow. Although DHSVM was uncalibrated, because the NF American Basin has 

steep slopes, shallow soils and little storage, we expect the relative magnitude of the simulated 

streamflow response to different precipitation biases to remain unchanged following calibration. 
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In general, no single meteorological forcing set considered here was able to capture the 

observed melt rates at all elevations and during the entire study period. At higher elevation sites 

(~2000-2500 m), the simulated melt rates during early spring were lower than observations at 

snowpillow locations, contributing to a bias in simulated streamflow timing at the higher sub-

basin (Onion Creek) and in the aggregated basin output. Simulated snowpacks at mid-elevation 

sites (~1500-2000 m) were found to be more sensitive to short-term positive biases in the 

radiation forcing than higher elevation sites. This was illustrated during a warm period in January 

of 2009, when higher values of empirically estimated long-wave irradiance caused high melt 

rates that were not observed. The sensitivity of warmer snowpacks in clearings has also been 

noted by Kuraś et al. (2011, their Figure 4), who found DSHVM simulated melt prematurely in 

clearings but not under forest canopy, and suggested the cause was the representation of the snow 

albedo decay. Our results suggest that this bias may, alternatively, be due to errors in estimates of 

incoming LW irradiance. However, another explanation is that errors in the simulated turbulent 

energy fluxes, which are on average small or opposite in sign (Marks and Dozier  ), may have 

become significant for short periods, yet this remains for future work.

Despite the intensive observations within the NF American Basin (Figure 1a and 1c, and 

Appendix A), the diagnosis of the biased melt rates was limited by the lack of observations of 

albedo and upward and downward long-wave irradiance, especially under forest canopy. Short of 

installing additional stations to provide these measurements, future work will examine different 

methods used to simulate the albedo decay, snow surface temperature, and internal energy 

storage. 
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SUMMARY OF CONCLUSIONS

This study used the Distributed Hydrology Soil and Vegetation Model to examine the 

impacts of different cases of meteorological forcing data on simulated snowpack and streamflow 

within the North Fork American River Basin region in the Sierra Nevada, California. Three cases 

of forcing data were created that represent commonly used configurations of forcing data from 

observations, empirical and mesocale model sources. The average bias in accumulated 

precipitation during the wet season from the Secret Town station and PRISM forcings had a 

mean bias of +91 mm, but varied from -237 to 409 mm between years. The WRF model had a 

higher mean bias of +196 mm, but with the exception of 2006, was consistently positive biased 

between years. When DHSVM was forced with the precipitation forcing from the WRF model, 

simulations of accumulated snowpack and total streamflow were biased high by a similar 

magnitude as the precipitation forcing for each water year, indicating that the precipitation bias is 

likely not due to gauge undercatch. 

 The elevational gradients of annual mean temperature from the WRF model agreed well 

with the climatological -6.5 °C km-1 lapse rate, yet failed to capture the daily diurnal temperature 

range, which was biased low on average by 3.0 °C. Surface vapor pressure estimated by 

assuming that saturation occurs during the minimum WRF model temperature performed worse 

than the output from the WRF model itself. Likewise, the empirical estimation of short-wave 

irradiance based on the WRF modeled temperature had larger average median errors than the 

WRF model output. Long-wave irradiance from the WRF model captured the expected 

decreasing mean values with elevation, but whether a low bias in long-wave irradiance caused 
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simulated melt rates to be too low over the Sierra Nevada remains for future work with 

additional observations. 

In general, the choice of which case of meteorological forcing was best was not the same 

for each year, or at each elevation. While the empirical estimated long-wave irradiance at high-

elevation sites resulted in melt rates lower than observations, at lower-elevations the same 

forcing caused mid-winter melt that was not observed. The higher sensitivity of simulated 

snowpacks at lower-elevation sites represents a difficult modeling environment that should be 

further used to test methods of generating forcing data as well as snow model formulation. For 

accumulated precipitation, the choice of which source was least biased, depended on the 

particular year. Future work remains to examine the impact of the sub-daily precipitation 

distribution between sources and the effect on the timing of snow accumulation and runoff. 
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GLOSSAARY OF ACRONYMS

Term Definition

CDWR The California Department of Water Resources

DHSVM The Distributed Hydrology Soil and Vegetation Model

HMT NOAA’s Hydrometeorological Testbed

WRF The Weather and Research Forecasting model

NARR The North American Regional Reanalysis

NF American Basin North Fork of the American River Basin

NSE The Nash-Sutcliff efficency

PRISM The Parameter Regression on Independent Slopes Model
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Appendix A: Observational stations used in this study.

Variable Network Number 

of Stations

Period of 

record

Temporal 

resolution
Precipitation CDWR 4 1999-2010 Daily

HMT 6 2007-2010 2-minute
Air temperature CDWR 8 1999-2010 Daily

HMT 8 2007-2010 2-minute
iButtons 47 2008-2010 30-minute

Relative humidity HMT 13 2007-2010 2-minute
iButtons 52 2008-2010 30-minute

Wind Speed CDWR 1 1999-2010 Daily
Short-wave irradiance HMT 2 2007-2010 2-minute

DRI 1 2007-2010 10-minute
Net irradiance HMT 3 2007-2010 2-minute
Streamflow USGS 

#11427000 
NF Dam

1 1999-2010 Daily

Sub-basin 
Stage height

2 2007-2010 Hourly

Snow water equivalent CDWR 6 1999-2010 Daily
(SWE) SNOTEL 2 1999-2010 Daily
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Appendix B: Filling of temperature sensor gaps 

Because the self-recording temperature sensors (iButtons) were placed in trees, they 

occasionally become covered in snow, resulting in low diurnal temperature ranges that have a 

mean near zero degrees. Any day that exhibited this type of behavior was removed from the data 

set. However, because these days are unrepresentatively cold, their removal introduces a warm 

bias to long-term means. Therefore, we employed empirical orthogonal function (EOF) 

reconstruction as described by von Storch and Zwiers (1999) and Beckers and Rixen (2003), in 

order to estimate some periods of missing temperature data. Filling of missing data via EOF 

reconstruction was only applied to those stations that recorded data at least 90% of each October-

June period between 2008 and 2010. The resulting quality controlled and filled temperature data 

was then aggregated into monthly means if 90% of each month’s hourly values were present. 

This method expands the available temperature data set while guaranteeing that wet season 

(October-June) means do not suffer from warm biases. 

Appendix C: Fractional long-wave irradiance calculation under a canopy

Under a canopy the long-wave irradiance reaching the surface is calculated within 

DHSVM by Equation 1. Where ↓LW is the long-wave irradiance emitted from the viewable 

atmospheric column, FCanopy is the fractional coverage of the canopy, and  LWCanopy is the long-

wave irradiance emitted from the canopy. More complicated methods exists but are not tested 

here (Sicart et al. 2006). 

Equation 1  
CanopyCanopyCanopySRF FLWFLWLW *)1(* 
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